

Proposed Safety Tiers for Cookstoves

Nathan Johnson

Iowa State University

Protocol History

- Limited data on cooking hazards, risk
- Equipment and methodology developed within the limitations of field testing
- Developed principally for biomass cookstoves
- Used by universities, non-governmental organizations, governmental organizations, and companies

Safety Assessment Criteria & Multipliers

1.	Sharp Edges and Points	1.5
2.	Cookstove Tipping	3.0
3.	Containment of Fuel	2.5
4.	Obstructions Near Cooking Surface	2.0
5.	Surface Temperature	2.0
6.	Heat Transmission to Surroundings	2.5
7.	Temperature of Operational Construction	2.0
8.	Chimney Shielding	2.5
9.	Flames Surrounding the Cookpot	3.0
10.	Flames/Fuel Exiting Fuel Chamber, Canister, or Pipes	4.0

Proposed Tiers: Safety

Tiers based on Biomass Stove Safety Protocol developed at Iowa State University and initial ISO discussions

Proposed Tiers: Safety

	Lima	Interim	Today
Tier 0	<45	<45	<45
Tier 1	≥45	≥45	≥45
Tier 2	≥77	≥62	≥75
Tier 3	≥89	≥78	≥88
Tier 4	≥95	≥95	≥95

Proposed Emissions Tiers for Cookstoves

Jim Jetter

U.S. Environmental Protection Agency

Tier "Bookend" Numbers

	Tier 0	Tier 1	Tier 2	Tier 3	Tier 4
Performance Indicator	3-Sto	3-Stone Fire		Aspirational Goal	
Fuel Use	Low Power Specific 0.050 M High Power Ther	Low Power Specific Energy Consumption: 0.050 MJ/(min x L) High Power Thermal Efficiency: 15%		Low Power Specific Energy Consumption: 0.017 MJ/(min x L) High Power Thermal Efficiency: 45%	
Emissions	Low Power CO: High Power CO: Low Power PM High Power PM _{2.5} :	Low Power CO: 0.20 g/(min x L) High Power CO: 16 g/MJ delivered Low Power PM _{2.5} : 8 mg/(min x L) High Power PM _{2.5} : 979 mg/MJ delivered		Low Power CO: 0.09 g High Power CO:8 g/MJ Low Power PM _{2.5} : 1 g, h Power PM _{2.5} : 41 mg/	/(min x L) delivered /(min x L) ′MJ delivered
Indoor Emissions	CO: 0. PM _{2.5} : 4	CO: 0.97g/min PM _{2.5} : 40mg/min		CO: 0.42g/min PM _{2.5} : 2mg/min	
Safety Iowa State University Rating System: 45		lo	wa State University Ra 95	ting System:	

Proposed Tiers: Overall Emissions

- Stoves will be given a single emissions rating
 - Rating will be based on lowest score from the 4 emissions criteria

	High Power CO (g/MJ delivered)	Low Power CO (g/(min x L))	High Power PM2.5 (mg/MJ delivered)	Low Power PM2.5 (mg/(min x L))
Tier 0	>16	>0.20	>979	>8
Tier 1	<16	<0.20	<979	<8
Tier 2	<11	<0.13	<386	<4
Tier 3	<9	<0.10	<168	<2
Tier 4	<8	<0.09	<41	<1

Proposed Tiers: Emissions

*Liquid fuels include LPG, kerosene, and ethanol

THE PARTNERSHIP FOR CLEAN INDOOR AIR/THE GLOBAL ALLIANCE FOR CLEAN COOKSTOVES

Proposed Tiers: Emissions

Proposed Tiers: Emissions

	High Power CO (g/MJ)	Low Power CO (g/min/L)
Tier 0	> 16	> 0.20
Tier 1	<u><</u> 16	<u><</u> 0.20
Tier 2	<u><</u> 11	<u><</u> 0.13
Tier 3	<u><</u> 9	<u><</u> 0.10
Tier 4	<u><</u> 8	<u><</u> 0.09

	High Power PM (mg/MJ)	Low Power PM (mg/min/L)
Tier 0	> 979	> 8
Tier 1	<u><</u> 979	<u><</u> 8
Tier 2	<u><</u> 386	<u><</u> 4
Tier 3	<u><</u> 168	<u><</u> 2
Tier 4	<u><</u> 41	<u>≤</u> 1

Proposed Indoor Emissions Tiers for Cookstoves

Michael Johnson Berkeley Air Monitoring Group

Notes on Indoor Emissions

Why do we need separate indoor emissions guidelines?

- Stoves designed to vent emissions outside the kitchen can improve indoor air quality.
- A way to link stove performance with indoor air quality guidelines.
- Looking to the WHO air quality guidelines group to inform future refinement of indoor emissions tiers.
- More work needs to be done to better link stove performance, air quality, exposure and health. The current proposed tiers make use of what is available now.

Linking indoor emissions with indoor air quality

Simple, commonly used model

- Constant PM_{2.5} and CO emissions rates
- Stove burns for 60min, 3 times a day
- Room size: 30m³
- Air exchange: 15/hr
- Instantaneous, perfect mixing

Tier 4 Indoor Emission Rates

 24hr average does not exceed WHO guidelines of 35µg/m³ for PM_{2.5} and 7mg/m³ for CO.

Concentrations

	Tier 4			WHO Guideline
PM _{2.5} (mg/min)	2	Approximately Equivalent	PM _{2.5} IAQ (μg/m ³)	35
CO (g/min)	0.4		CO IAQ(mg/m ³)	7

Proposed Tiers: Indoor Emissions

Indoor Emissions

Proposed Tiers: Indoor Emissions

	IAQ CO (g/min)	IAQ PM (mg/min)
Tier 0	>0.97	>40
Tier 1	<0.97	<40
Tier 2	<0.62	<17
Tier 3	<0.49	<8
Tier 4	<0.42	<2

Fuel Use and Thermal Efficiency Tiers of Performance

Christian L'Orange Engines and Energy Conversion Laboratory Colorado State University Fort Collins CO USA

18

kerosene, and ethanol

Proposed Tiers: Fuel Use

	High Power	Low Power
	Thermal Efficiency (%)	Specific Consumption (MJ/min/L)
Tier 0	<15	>0.050
Tier 1	<u>></u> 15	≤0.050
Tier 2	<u>></u> 25	≤0.039
Tier 3	<u>></u> 35	≤0.028
Tier 4	<u>></u> 45	≤0.017